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ABSTRACT 11 

Aflatoxin is a mycotoxin produced by the Aspergillus flavus fungi that can severely contaminate 12 

corn grain. The U.S. Food and Drug Administration (FDA) have set a limit of 20 ppb, total 13 

aflatoxin, for interstate commerce of food and feed as it can induce liver cancer in humans and 14 

animals. Contamination is exacerbated by high temperatures, drought conditions and light-15 

textured soil which are all common in Georgia (GA). Lack of irrigation infrastructure can further 16 

amplify drought stress and aflatoxin contamination. Accurate aflatoxin assessment requires the 17 

collection of multiple corn samples, is expensive and conducted at harvest which does not allow 18 

for the use of in-season mitigation strategies to reduce the risk. Given the expense of 19 

measurement and the consequences of crop loss, an important goal for agricultural extension 20 

services is the prediction and identification of years and counties at higher risk of aflatoxin 21 

contamination. This would allow growers to deploy management tactics to reduce risk and to 22 

reduce unnecessary expense on aflatoxin testing. In this research, aflatoxin levels were analysed 23 
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by Poisson kriging and used to validate a strategy for identifying high risk years and counties. It 24 

is based on mapping risk factors (Maximum June temperatures, June rainfall, % corn planted 25 

area and % soil drainage types) that are above key thresholds. The aflatoxin data used were 26 

county level, collected unevenly in space and time from 1977 to 2004 in 53 counties in southern 27 

GA. Averaging and typical geostatistical methods were unreliable for producing a temporal 28 

summary of the spatial patterns because aflatoxin data were highly skewed and approached a 29 

Poisson distribution, and averages for counties based on fewer observations are less reliable. 30 

Poisson kriging down-weights the influence of these in variogram computation and the 31 

estimation process. Comparison tests confirmed significant differences in aflatoxin levels 32 

between counties and years that were identified as having different levels of risk using the risk 33 

factors approach. Sensitivity analysis for Poisson kriged aflatoxin risk showed that the more 34 

years of data are clearly better for this analysis, but fewer than 15 years of data were not 35 

advisable. 36 

 37 

Keywords: Aflatoxin, Corn, June Maximum Temperature, June Rainfall, Southern 38 

Georgia, Geostatistics, Poisson Kriging, Soil type, Soil drainage 39 

 40 

1. Introduction 41 

 42 

Aflatoxin is a mycotoxin produced by fungi (Aspergillus flavus or Aspergillus 43 

parasiticus) which can contaminate several staple crops such as peanut, (Brenneman et al. 1993), 44 

millet (Wang et al. 2010, Wilson et al. 1993), rice (Abbas et al 2005), sorghum (Adegoke et al. 45 

1994), wheat (Patriarca et al. 2014) and corn (Payne, 1992). Aflatoxin can cause liver cancer in 46 
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humans and animals (Barrett, 2005 and FDA, 2012). The Food and Drug administration office 47 

(FDA) of the USA have set a limit of 20 ppb, total aflatoxin, to restrict use of corn, peanut 48 

products, cottonseed meal, and other animal feeds and feed ingredients intended for dairy 49 

animals, for animal species or intended for immature animals. There is also a limit of 100 ppb 50 

restricting use of corn and peanut products intended for breeding beef cattle, swine, or mature 51 

poultry (FDA, 2015). Infection of corn with A. flavus or A. parasiticus is exacerbated by high 52 

temperatures, drought and high net evaporation (Guo et al. 2008, Horn et al. 2014 and Payne, 53 

1992) associated with particular climatic areas (Abbas et al. 2007, Patriarca et al. 2014), agro-54 

ecological zones (Setamou et al. 1997) and soil types (Palumbo et al. 2010). Statistically, there 55 

are 16-31 times more deaths from liver cancer in less developed countries due at least in part to 56 

aflatoxin contamination of food (Liu and Wu, 2010) and many of these countries are 57 

predominantly hot and often drought prone (Wu and Klangwiset, 2010). Several studies have 58 

examined possible increased contamination rates under climate change scenarios (Medina et al. 59 

2014 and Medina et al. 2015) and suggest that aflatoxin contamination will increase in many 60 

areas as temperatures rise.  61 

In Georgia (GA) and throughout the southern USA, corn is planted as a summer crop and 62 

is highly susceptible to aflatoxin contamination (Widstrom et al. 1996). Rainfall variability and 63 

high temperatures in this region during summer, along with light textured soils that exacerbate 64 

drought or water stress, all influence contamination. Also, lack of irrigation infrastructure in 65 

some areas can further aggravate water stress (Brenneman et al. 1993). Salvacion et al. (2011) 66 

found that June maximum temperatures and precipitation were key predictors of aflatoxin 67 

contamination in southern Georgia (GA), USA. Damianidis et al. (2015) found that the risk of 68 

aflatoxin contamination changes specifically with corn hybrid planted, soil type and the weather 69 
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conditions before and after the mid-silk growth stage, which usually occurs in June across the 70 

Southeast US. Using the drought index, ARID, as an aflatoxin risk predictor, they also found that 71 

a 0.1 increase of in-field drought, as quantified by ARID, during key weeks before and after mid-72 

silk, increased the probability of aflatoxin contamination over the FDA threshold of 20 ppb.  73 

Accurate aflatoxin assessment usually requires the collection of multiple grain samples. 74 

There are several methods available but most are time-consuming and expensive (Papadoyanis, 75 

1990) and conducted at harvest which does not allow implementation of in-season management 76 

practices to reduce risk. Given the expense of aflatoxin measurement, an important goal for 77 

agricultural extension services and crop consultants would be the ability to identify those years 78 

and counties most at risk of contamination to reduce unnecessary expense on testing in years and 79 

areas when there is little risk of contamination. Identification and prediction of years and 80 

counties at risk would allow the implementation of management strategies such as irrigation in 81 

season to reduce contamination risk and the use of resistant varieties (Chen et al. 2002, Chen et 82 

al. 2006, Guo et al. 2011 and Menkir et al. 2008). Another goal of agricultural extension services 83 

could be to provide an easy to use, computationally efficient, online decision support tool to 84 

assess aflatoxin contamination risk that could work for large datasets and crop consultants would 85 

require a simple approach to determining risk that could be executed in commercially available, 86 

user-friendly software. 87 

The purpose of this research was to apply geostatistical methods to develop a predictive 88 

tool using a risk factors approach for identifying problematic years and counties with a longer 89 

term view to being able to implement the tool as part of an online decision support system. To 90 

validate the risk factors approach, a space-time summary of aflatoxin risk is needed. Similar to 91 

soil contaminants, aflatoxin data, as a crop toxin can be expected to be highly skewed. In soil 92 
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contamination studies, indicator kriging (Goovaerts, 2009) has been used to map the risk of 93 

exceeding a particular contamination threshold (Goovaerts et al. 1997). Indicator kriging, 94 

however, requires sufficient data to compute a reliable variogram for each year and would result 95 

in a risk map for each year with no practical way to produce a space-time risk summary. 96 

Aflatoxin data collected from regional sampling is often skewed and approaches a Poisson 97 

distribution. Practitioners often analyze data that has been collected by third parties, but do not 98 

consider potential geostatistical investigations. Many times, such data have also been collected 99 

irregularly in space and time. The 27 year Georgia aflatoxin survey appears to fit these criteria, 100 

and these data are perhaps better understood using Poisson kriging. Poisson kriging was first 101 

developed by Monestiez et al. (2006) to investigate rare whale sightings, which tend to have a 102 

Poisson distribution, and had been observed irregularly in space and time. Poisson kriging has 103 

been further adapted for use with sightings of other rare animals (Kerry et al., 2013), used in 104 

studies of mortality rates from rare diseases (Goovaerts 2005, 2006a,b) and the investigation of 105 

crime rates (Kerry et al., 2010). Poisson (Goovaerts 2006a,b) and Binomial kriging (Oliver et al. 106 

1998) have been used interchangeably in the literature for mapping rates of rare disease and 107 

although superficially different, often lead to similar results (Flanders and Kleinbaum., 1995) . 108 

Even though Binomial kriging may be more theoretically appropriate in certain cases where the 109 

characteristics of the data are known a priori, it adds an extra layer of complexity requiring an 110 

additional parameter to computations. Indeed, as the number of trials increases, the Binomial 111 

distribution approaches the Poisson distribution (Haining et al. 2010) and its use can be justified 112 

here since assumptions about the prevalence of aflatoxin are avoided.  Furthermore 113 

implementations are not available in user-friendly commercially available software packages. 114 

Spatially irregular observations or the analysis of rate or proportion data can suffer from the 115 
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‘small number problem” (Haining et al., 2010) and be unreliable in areas that have received less 116 

sampling effort or are sparsely populated. For example, if a given county was only sampled in a 117 

particularly high risk year but other counties were sampled over several years, the county with 118 

just one measurement would seem to have very high aflatoxin levels.  Binomial or Poisson 119 

kriging can be used to give a space-time summary of aflatoxin contamination data collected over 120 

a 27 year period (1977-2004) in 53 counties in southern GA that takes account of the “small 121 

number problem”, but here the latter will be used due to computational simplicity with a view to 122 

the eventual implementation in an online decision support tool or use by agricultural consultants 123 

using commercially available software. Due to irregular sampling in space and time there are 124 

insufficient data to employ other geostatistical methods for individual years. The space-time 125 

summary of aflatoxin contamination in southern GA produced by Poisson kriging will be used to 126 

assess the viability of a risk factors approach for identifying the counties and years at greatest 127 

risk of aflatoxin contamination. Based on existing literature, several key risk factors namely 128 

Maximum June temperatures (June TMax) (Salvacion et al., 2011), June Rainfall (June RF) 129 

(Salvacion et al., 2011; Damianidis et al., 2015; Windham et al., 2009)), amount of corn grown 130 

and proportion of droughty soil types (Damianidis et al., 2015) are examined and key thresholds 131 

related to aflatoxin contamination identified. Another secondary aim of this research is to 132 

conduct a sensitivity analysis of the number of years of data used to create a Poisson kriged 133 

space-time summary of risk. 134 

 135 

2. Methods 136 

 137 

2.1. Data Collection 138 
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 139 

Between 1977 and 2004, corn grain samples were collected at harvest to measure within 140 

county aflatoxin content. Samples were collected using a grab sampling technique where 10 ears 141 

were collected for each sampling and there was an average of 3 replications per county. The 142 

study area was 53 counties in southern GA (Fig. 1A). Aflatoxin levels in ppb were measured by 143 

the USDA-ARS Crop Protection and Management Research Unit and the University of Georgia, 144 

Natural Products Laboratory in Tifton, GA. Aflatoxin levels were not measured in every county 145 

in every year. Data were collected for a maximum of 45 counties in 1978 (Fig. 1C) and a 146 

minimum of 23 counties in 1990 (Fig. 1D) with an average of 37 counties sampled each year that 147 

measurements were made. Fig. 1A shows that aflatoxin was measured in the fewest years in the 148 

north eastern counties of southern GA. Measurements were not made in any counties in 1979-149 

1980 and 1986-1989. For all years combined there was a total of 705 measurements and these 150 

data approached a Poisson distribution (Fig. 2). 151 

Monthly weather data were obtained for each year 1977-2004 from the Georgia Weather 152 

Network (http://georgiaweather.net), with weather stations delineated as black points in Fig. 1A.   153 

All counties do not have a weather station, some have more than one and the weather stations are 154 

not located at the center of the county. There are 82 for the state as a whole, but the installation 155 

date of stations varies so data are not available for all stations in all years. Monthly maximum 156 

temperatures for June (June Tmax, °C) and June rainfall data (June RF, mm) (Salvacion et al., 157 

2011), were collected and summarized from the recording stations. 158 

The area planted with corn per county was determined using The CropScape - Cropland data 159 

layer produced by the National Agricultural Statistics Service (NASS, 160 

http://nassgeodata.gmu.edu/CropScape/). Unfortunately this information was not available for 161 
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1977-2004 so the proportion of land in each county planted as corn had to be determined from 162 

the 2008-2009 growing season which was the first growing season with full coverage in southern 163 

GA. This assumes that the areas growing corn in southern GA have not changed markedly in the 164 

study period. Non-spatial data relating to the area of corn grown in each county by year were 165 

available using the quick stats tool of USDA-NASS 166 

(https://www.nass.usda.gov/Statistics_by_State/Georgia/Publications/County_Estimates/2016/G167 

ACorn14_15.pdf) for correlation analysis. These showed strong, positive and significant 168 

(p=0.05) correlations between the area of corn in each county for all years in the study and 2008. 169 

This means that the highest corn producing counties are quite consistent in time and that our 170 

assumption above about the CropScape data is reasonable. However, the larger the gap between 171 

two years, the lower the correlation coefficient was showing that there will be most uncertainty 172 

in the corn data for this study for 1977. This will also have an effect on the uncertainty of the soil 173 

data mentioned below. 174 

A geo-corrected 1:250,000 map of soil associations (NRCS, 2006) was simplified and used 175 

to generate a map with 3 drainage classes: excessively, well and poorly drained soil. The 176 

percentage of land areas with soil in each drainage class in the 2008/2009 corn growing area (as 177 

identified using CropScape above) was calculated for each county.  178 

 179 

2.2. Statistical Methods 180 

 181 

As weather data and aflatoxin data were not available for every county each year, 182 

geostatistical methods were applied to estimate missing values and fill these data gaps. 183 
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The first step in geostatistical analysis was to compute an experimental variogram using the 184 

standard method of moments estimator (Matheron, 1965, Equation (1)) to characterize the spatial 185 

structure of the variation. The formula estimates the semi-variances, γ, at a given lag distance, h: 186 

 187 
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where z(xi) and z(xi + h) are the observed values of z at xi and xi + h and m(h) is the number of 190 

pairs of data points separated by the lag h (Webster and Oliver, 2007). In other words, counties 191 

that are located close together show less variation between them than counties that are separated 192 

by larger distances. 193 

A continuous model is then fitted to the experimental variogram using weighted least 194 

squares and then parameters of the variogram model are used in kriging, the geostatistical 195 

interpolation process. As the standard method of moments variogram estimator is based on 196 

variances (Equation 1) it is sensitive to large outliers or tails in a distribution (Kerry and Oliver, 197 

2007a,b). A typical variogram where the semi-variance increases as the separating distance 198 

between points increases, up to a sill where semi-variances stay the same with increasing 199 

separation distance, indicates that the data no longer show spatial autocorrelation once they are a 200 

certain distance apart (Fig. 1B). Webster and Oliver (1992, 1993) found that variograms based 201 

on fewer than 50 observations are of little worth and recommended that at least 100 data points 202 

are needed to compute a reliable variogram for kriging. The number of samples needed to 203 

compute a reliable variogram does however, depend on the form of variation (Webster and 204 

Oliver, 1992) present, spatial configuration of the samples and the probability distribution of the 205 
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data (Kerry and Oliver, 2007a,b). Weather data are derived from well-established, carefully 206 

located stations and variation often displays quite predictable patterns in relation to latitude, 207 

proximity to coasts and elevation. Variograms for June TMax and June RF in Georgia showed 208 

good spatial structure (Fig. 5A,B) with markedly less than 100 data values for each year. 209 

Because the data were approximately normally distributed, the variograms were used for 210 

Ordinary Kriging of June TMax and June RF for each year to the centroid of each county in 211 

southern GA to fill in data gaps for some counties and also to a 1 km grid. The kriging variance 212 

maps for weather data in 1977 and 2001 (Fig. 1E,F) show that the spatial uncertainty in the 213 

kriged weather data varies according to the number and location of weather stations with data for 214 

a given year. Kriging data to a 1 km grid was used to see if there were areas smaller than the 215 

county level that were at the greatest risk of contamination. Ordinary kriging, a well-documented 216 

geostatistical interpolation method (Goovaerts, 1997; Isaaks and Srivastava, 1989; and Webster 217 

and Oliver, 2007), was also used to estimate the % corn planted area and each soil drainage class 218 

for the cells of the 1 km grid. Kriging of county level risk factors and aflatoxin data (areal 219 

support) to a 1 km grid (point support) represents a change in support. When there is good reason 220 

to believe that the size and shape of areal units (here counties) are somehow related to the 221 

phenomena of interest, then the size and shape of the areal units should be taken into account 222 

during variogram computation and kriging (Kerry et al. 2016). This could be achieved using 223 

Area-to-Point Poisson kriging (Goovaerts 2006b; Kerry et al. 2010) and Area-to-Point ordinary 224 

kriging (Kyriakidis, 2004) for the aflatoxin and risk factor data, respectively. While natural 225 

features like rivers sometimes partially delineate county boundaries, they are largely 226 

administrative and not related to environmental phenomena that might influence aflatoxin 227 

contamination or the risk factors investigated. Also Area-to-Point kriging is more 228 
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computationally intensive, an undesirable feature for developing an efficient online decision 229 

support tool, so the change in support was not taken into account here when producing the 1 km 230 

grid data. 231 

Analysis and interpretation of the GA corn aflatoxin data with geostatistical methods is 232 

problematic. A variogram of aflatoxin contamination for each year for all counties in southern 233 

GA must be computed with an average of 37 data points and as few as 23 (Fig. 1D). Variograms 234 

for individual years were unreliable and showed little spatial structure. This is typical of highly 235 

skewed (Kerry and Oliver, 2007a,b) and sparse data (Webster and Oliver, 1992). The aflatoxin 236 

data were highly positively skewed and approached a Poisson distribution (Fig. 2). Poisson 237 

kriging (Monestiez et al. 2006) is ideal for data with a Poisson distribution, which have been 238 

irregularly observed in space or time as these data have been. The proportion of years a county 239 

had aflatoxin levels > 20ppb and > 100 ppb were Poisson kriged to county centroids and also to a 240 

1 km grid. Ratios were calculated where, the numerator was the number of times aflatoxin levels 241 

were above one of the thresholds in a given county and the denominator was the number of years 242 

aflatoxin was measured in that county. The influence of ratios for counties with fewer 243 

observations was down-weighted in variogram computation and kriging. The influence of these 244 

unreliable proportions on the variogram was reduced by using the following weighted estimator: 245 
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where N(h) is the number of pairs of counties (vα,vβ ) whose centroids are weighted by the 247 

number of years with observations to homogenize their variance (Goovaerts, 2006b) are 248 

separated by the vector h, and m∗ is the denominator-weighted mean (weighted by the number of 249 

years with observations) of the N area ratios. The usual squared differences, [r(vα)– r(vβ)]
2, are 250 
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weighted by a function of their respective denominator sizes, d(vα)d(vβ )/[d(vα)+d(vβ)], which 251 

gives more importance to more reliable data pairs based on larger denominators (Monestiez et al. 252 

2006, Goovaerts, 2005, 2006a,b). Poisson kriging is a form of kriging with non-systematic errors 253 

and is parametric, modelling the noise attached to each observation with a Poisson distribution. 254 

Observations with small denominators receive less weight in kriging, the estimation process, by 255 

adding an error variance term to the diagonal of the kriging system. For more details see 256 

Monestiez et al. 2006 and Goovaerts, 2005, 2006a, b. Geostatistical methods were carried out 257 

using SpaceStat (Jacquez et al. 2014). 258 

 259 

2.3. Risk Factors Approach 260 

 261 

By applying kriging, risk factor (June TMax, June RF, % Corn planted area and Soil 262 

drainage type) data were generated for each county and each node in a grid with 1 km spacing. 263 

These data were then converted to indicators (0/1) depending on whether each variable exceeded 264 

certain thresholds or not. Table 1 shows the thresholds chosen for each variable. The thresholds 265 

for June TMax and June RF were selected on the basis of 30-year normals in southern GA; 266 

values assigned a (1) show hotter or drier years than normal. The indicator thresholds for other 267 

risk factors were determined based on examination of histograms of these variables in 268 

association with natural marked breaks in the distribution or values associated with the tails of a 269 

normal distribution. In each case the condition that would be expected to increase aflatoxin 270 

contamination was assigned ‘1’ and the condition that would constitute less risk of 271 

contamination a ‘0’. An additive approach was then used with the indicator data to determine the 272 

number of risk factors above/below the specified threshold for each county and year. The 273 



13 

 

relationship between these additive indicator data and the Poisson kriged aflatoxin data was 274 

assessed. This suggested broad groupings of years and counties with different levels of aflatoxin 275 

contamination risk. These broad groupings were used to define grouping variables (Table 2) 276 

based on risk factors for Mann-Whitney U and Kruskal-Wallis H comparison tests (VSN 277 

International, 2015) to determine if there were significant differences in aflatoxin levels based on 278 

these thresholds identified by the risk factors approach. 279 

 280 

2.4. Sensitivity Analysis 281 

 282 

To determine the effect of the number of years of data used to create a space-time 283 

summary a Poisson kriging sensitivity analysis was performed. All years with available aflatoxin 284 

data (21 years) were sub-sampled to produce 10 random sub-samples with 5, 10 and 15 different 285 

years of aflatoxin data. Each sub-sample was Poisson kriged and the patterns for individual sub-286 

samples of years and the mean patterns for a given sample size of years were compared visually 287 

with the Poisson kriged data generated using all available years of measurements. The Poisson 288 

kriged values for individual sub-samples and the mean for a given sample size of years were also 289 

compared statistically using Mann-Whitney U tests based on high (≥3 risk factors) and low (<3 290 

risk factors) risk counties. 291 

 292 

3. Results and Discussion 293 

 294 

3.1. Summary Statistics of Aflatoxin Data 295 

 296 
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 To summarize the risk of aflatoxin contamination in space and time, and to verify if the 297 

risk factor approach is useful, summary statistics for the data were calculated. The summary 298 

statistics.showed that the mean, and to a lesser extent the median, are influenced by the 299 

maximum value and this is particularly pronounced for the years where a smaller proportion of 300 

the counties were observed (e.g. 1977, 1985, 1990, 1991 and 2004) (Fig. 3). This suggests that 301 

‘the small number problem’ (when proportions for a year are unreliable because they are based 302 

on measurements in fewer counties) affects summaries of aflatoxin by county (Fig. 4). Counties 303 

with the smallest number of sampling years (e.g. Candler, Clinch, Emmanuel, Laurens, 304 

Montgomery, Pulaski and Treutlen) are some of those with the largest and smallest mean 305 

aflatoxin levels. This indicates that when examined by county, the ‘small number problem’ is an 306 

issue that should be addressed. Analysis and summary of the spatial and temporal variability of 307 

mean aflatoxin levels by year and county does not provide a reliable indication of the years and 308 

counties at greatest risk of contamination. The correlation coefficient between the mean and 309 

median aflatoxin levels for years was r=0.89 (p<0.001) and was r=0.35 (p=0.015) for counties. 310 

This clearly indicates that the ‘small number problem’ is a greater complication for spatial 311 

analysis than for temporal analysis. 312 

 313 

3.2. Poisson kriging of Aflatoxin Data 314 

 315 

Two examples of variograms for aflatoxin data corresponding to individual years, 1978 316 

and 1991, are shown in Fig. 5C,D. Both have a very erratic structure compared to a typical 317 

variogram (Fig. 1B) due to the small sample size for individual years (23-45 counties, Webster 318 

and Oliver, 1992) and the highly skewed distribution of the data (Kerry and Oliver, 2007), which 319 
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approaches a Poisson distribution (Fig. 2). Small sample size and skewed data cause the 320 

variograms to have an erratic form or cause it to appear as if there is no spatial structure (ie 321 

variogram is pure nugget, essentially a horizontal line indicating no spatial autocorrelation). 322 

Variograms were computed for all years jointly by calculating a summary variable such as the 323 

mean or median aflatoxin for 1977-2004 for each county (Fig. 5E,F) and there were more data 324 

(705). Although these variograms are a little less like pure nugget variograms than the individual 325 

years (Fig. 5C,D), they are erratic in form and not suitable for kriging. This was due to the mean 326 

and median data exhibiting high skew values: 2.71 and 3.46, respectively, and the histograms 327 

(not shown) approaching a Poisson distribution. In contrast, when the proportions of aflatoxin 328 

values exceeding two critical thresholds (20 ppb and 100 ppb) were examined using the Poisson 329 

variogram (Fig. 5G,H), variograms showed good spatial structure with approximate ranges of 54 330 

km and 33 km, respectively. These ranges show that the areas with > 100 ppb aflatoxin are on 331 

average smaller than those with >20 ppb. 332 

The Poisson variograms (Fig. 5G,H)were used to Poisson krige the proportion of years 333 

that aflatoxin exceeded 20 ppb and 100 ppb and the maps produced for a 1 km grid are show in 334 

Fig. 9J and K, respectively and can be used to verify the risk factors approach for identifying the 335 

highest risk counties outlined below. 336 

 337 

3.3. Analysis of Risk Data 338 

 339 

3.3.1. Temporal Patterns 340 

Analysis of temporal patterns for the risk of aflatoxin contamination is primarily centered 341 

on analyzing the risk associated with weather variables, specifically June TMax and June RF 342 
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(Salvacion et al. 2011, Damianidis et al., 2015), which help identify the specific years at greatest 343 

risk of contamination. Weather data for June Tmax and June RF in 2001, were ordinary kriged to 344 

county centroids and displayed on a county basis (Fig. 6A,B). Fig. 1F shows the kriging variance 345 

associated with these data and where they are likely to be most reliable.  Applying the thresholds 346 

of June Tmax > 33°C and June RF < 50 mm (Table 1), which are based on 30 year normals for 347 

the region, it was observed that in 2001 most counties were not hotter than normal (Fig. 6C) and 348 

about one third of counties were drier than normal (Fig. 6D). A combined analysis of these two 349 

weather factors, indicated that no counties are at a high (2) risk of aflatoxin contamination and 350 

about one third of counties have a medium risk (1) (Fig. 6E). Fig. 6F shows the measured 351 

aflatoxin values for 2001 and the majority of values are below 20 ppb showing this was a low 352 

risk year for aflatoxin (Mean = 8.5 ppb and Median = 3 ppb, Fig. 3A,B). In contrast, Fig. 7A,B 353 

show the Ordinary kriged June Tmax and June RF for 1977 on a1 km grid. Fig. 1E shows the 354 

kriging variance associated with these data and where they are likely to be most reliable and that 355 

there is generally greater uncertainty in the 1977 weather data than that for 2001 (Fig. 1F) as data 356 

were available at fewer weather stations. Fig. 7A,B indicate how transition zones between high 357 

and low values may look and affect values within counties. Using the same thresholds (Table 1) 358 

as for 2001, Fig. 7C shows that in 1977 all counties were hotter than normal (> 33°C) and Fig. 359 

7D shows that the majority of counties were drier (<50 mm) than normal. Fig. 7E shows that 360 

when the indicators for the two weather factors are combined the majority of southern GA is at 361 

high risk (2) of aflatoxin contamination in 1977. This agrees with the majority of measured 362 

aflatoxin levels being over 20 ppb and many being over 200 ppb (Fig. 7F) as well as the mean 363 

and median being well over this threshold, 470 and 192 ppb, respectively (Fig. 3A,B). 364 
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The proportion of counties with aflatoxin levels > 20 ppb was calculated for each year 365 

and correlated with the proportion of counties with a combined weather risk of two for each year 366 

using a scattergraph (Fig. 8). This produced a correlation with a coefficient of r=0.80 which is 367 

significant at p<0.001. Three distinct groups of years were identified in the scatter plot by visual 368 

empirical grouping, but statistically-based clustering methods could be used in the future.  The 369 

groups identified years that had high (1977, 1981, 1998), medium (1978, 1990, 1992, 1993, 370 

1995, 1996, 2000, 2002) and low (1991, 1994, 1997, 1999, 2001, 2003, 2004) risk of aflatoxin 371 

contamination. This grouping clearly suggests the influence of weather conditions on aflatoxin 372 

contamination. 373 

 374 

3.3.2. Spatial Patterns 375 

 376 

As with temporal patterns, analysis of spatial patterns of aflatoxin contamination to 377 

identify the counties at greatest risk requires the analysis of weather variables and their patterns 378 

of variability. However, patterns of the percentage of each county growing corn and the 379 

proportions of each county in corn production with well- and excessively-drained soil become 380 

relevant. These factors are relatively stable in time but vary considerable in space and should 381 

help determine the counties most at risk of aflatoxin contamination in corn. Figs. 9A-C show the 382 

patterns in percent corn, well- and excessively-drained soil and Figs. 9E-G show the indicators 383 

produced from these data using the thresholds in Table 1. Based on % corn planted area, there is 384 

greatest risk (1) in the south western part of the GA (Fig. 9E). For well-drained soil, risk is 385 

greatest in the west (Fig. 9F) and for excessively-drained soil the north is the highest risk area 386 

(Fig. 9G). Fig. 9D shows a map where the two weather risk factors (June TMax and June RF) 387 
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used to identify the years most at risk of aflatoxin contamination have been combined and the 388 

proportion of years with two weather risk factors has been kriged to a 1km grid. This analysis 389 

provides a space-time summary of the areas most prone to drought, in southern GA. When 390 

converted to an indicator based on the threshold in Table 1, Fig. 9H exhibits the areas with a high 391 

(1, >30% of years) risk of drought. Fig. 9I displays the percentages of years with three or more 392 

risk factors for aflatoxin contamination where June Tmax and June RF are considered separate 393 

risk factors. The map has similarities to Figs 9G,H suggesting that weather and excessively 394 

drained soils are the greatest risk factors for aflatoxin contamination. Nevertheless, the crucial 395 

importance of both weather factors is shown by the striking similarity in the patterns shown in 396 

Fig. 9D,H which show drought summary and Fig. 9J,K which show the Poisson kriged summary 397 

of aflatoxin levels in all years. Fig. 9L presents the relationship between the proportion of years 398 

with 3 or more risk factors and proportion of years with aflatoxin levels >20ppb for each county. 399 

The correlation coefficient for this relationship was r=0.59, which is significant at p<0.001. 400 

Distinct groupings of counties are visible in the plot and have been delineated. Such groupings 401 

were not very well defined when just weather factors were considered and the correlation 402 

coefficient was lower, suggesting that the other risk factors (% corn planted area and soil 403 

drainage types) help to distinguish the spatial differences between counties in addition to weather 404 

patterns. The higher risk counties circled with solid black/red and dashed black/green lines (Fig. 405 

9L) are the northern most counties in southern GA as well as those in the central area of the 406 

northern half of the state. 407 

 408 

3.4. Confirmatory Analysis 409 

 410 
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A range of comparison tests (Mann-Whitney U and Kruskal-Wallis H) were performed to 411 

determine whether there were significant differences in aflatoxin levels based on the risk levels 412 

identified with the risk factor approach. First, aflatoxin for all years was compared based on 413 

whether a county was a high risk county as identified by the risk factors approach (ie ≥ 3 risk 414 

factors in more than 20% of years) (Table 2A). When a Mann-Whitney U test was performed 415 

using average aflatoxin levels for all years as the test variable, there was not a significant 416 

difference (p=0.569) in aflatoxin levels between the counties identified by the risk factors 417 

approach as high risk counties and those not. However, when the Poisson kriged summary data 418 

for % years with > 20 ppb and 100 ppb aflatoxin were used as the test variables, the difference 419 

between the counties identified as at risk and those not was significant, p=0.002 and p=0.012, 420 

respectively. The order of class ranks also demonstrates that the lowest ranks were obtained for 421 

counties with 0-20% years with >3 risk factors. This indicates that the average aflatoxin levels do 422 

not give a good summary of the counties most and least at risk of aflatoxin contamination while 423 

the Poisson kriged data which down-weight the influence of proportions based on low numbers 424 

of observations, provided an acceptable summary. 425 

A comparison of the raw measured aflatoxin levels for each year based on the number of 426 

risk factors identified for each year (e.g. weather factors), county (based on soil drainage type 427 

and % corn planted area) and years and counties together is reported in Table 2B. These results 428 

indicate that the differences between years based on weather data is significant at p<0.001, 429 

however, the differences between counties based on other risk factors is not significant 430 

(p=0.241), but does not show the expected order of class ranks. When the risk from weather and 431 

other factors is combined there is a significant difference (p<0.001) in the raw aflatoxin values 432 

and the order of class ranks shows that aflatoxin levels for each class increase as the number of 433 
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risk factors identified increases as expected. This clearly demonstrates the importance of weather 434 

in an individual season for determining if a county is at risk of aflatoxin contamination. The 435 

temporal summaries of spatial patterns, further confirm the importance of weather in determining 436 

risk. Fig. 9B,C show the very small proportions of well and excessively drained soils in southern, 437 

particularly southeastern counties of the study area, yet there are high proportions of years with > 438 

100ppb aflatoxin in south central areas (Fig. 9K) which coincide with high proportions of years 439 

with two weather risk factors. 440 

Finally, Table 2C compares aflatoxin levels based on the proportion of years there were 441 

≥3 risk factors per county split into the four grouping identified in Fig. 9L. When average 442 

aflatoxin levels were used, a significant difference was found between counties that had different 443 

proportions of years with ≥3 risk factors (p=0.043), however the order of class ranks was not as 444 

expected because average aflatoxin levels were not greater for counties with a greater percentage 445 

of years with aflatoxin levels > 20 or 100 ppb. When the comparison based on these groupings 446 

was performed with the Poisson kriged data (proportion of years aflatoxin levels were >20 and 447 

100 ppb) as the test variables, the difference between the groups was highly significant (p<0.001) 448 

and showed the expected order of class ranks namely, the higher the proportion of years with ≥3 449 

risk factors, the larger the proportion of years with > 20 and 100 ppb. 450 

 451 

 452 

3.5. Sensitivity analysis 453 

 454 

Maps of the Poisson kriged proportion of years exceeding 20 and 100 ppb aflatoxin 455 

indicate the average patterns based on 10 random sub-samples of 5, 10 and 15 years of data (Fig. 456 
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10A-C, E-G) and those are plotted to the same scale as the Poisson kriged map for all years (Fig. 457 

10D,H). It is clear from these maps that the proportion of years with aflatoxin over threshold 458 

levels is underestimated for all sub-sample sizes. This degree of underestimation is also greatest 459 

for the smallest sample of years (5, Fig. 10A,E). When the same data used in Fig. 10A-Cand E-G 460 

were plotted using quantiles (not shown) they showed similar patterns to one another in terms of 461 

the highest and lowest risk counties. However, the largest percentages were found in the central 462 

and western counties in slight contrast to the maps for all years (Fig. 10D,H). This shows 463 

locational bias relating to which counties were sampled in more years (Fig. 1A) and were 464 

therefore more likely to be included in more of the random samples of years. There appears to be 465 

slightly less underestimation in the proportion of years that thresholds are exceeded and less 466 

locational bias for the 100 ppb threshold (Fig. 10E-H) than for the 20 ppb threshold (Fig. 10A-467 

D). This is probably due to the fact that 100 ppb is a rarer occurrence than 20 ppb and Poisson 468 

kriging was specifically designed for kriging rare occurrences.  469 

In contrast to Table 2A, Mann Whitney U tests showed no significant difference (p>0.05) 470 

between high (≥ 3 risk factors) and low risk counties (< 3 risk factors) for the mean PK > 20 ppb 471 

and > 100 ppb values for all sub-sample sizes and 88% of the individual sub-samples 472 

(predominantly sample size 5 and 10). This suggests that a sample size of at least 20 years of 473 

aflatoxin data is needed to get a reliable space-time summary of aflatoxin risk. 474 

 475 

4. Conclusions 476 

 477 

This research demonstrates that when data have been irregularly sampled in space and 478 

time and also approach a Poisson distribution, Poisson kriging is a useful way to generate a 479 

temporal summary of spatial patterns. Simple averages were shown to be unreliable where fewer 480 
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observations were made and standard geostatistical methods do not work well when data have a 481 

Poisson distribution or have few data for individual years. Comparison tests showed that counties 482 

and years identified as having the greatest risk levels using the risk factors approach did have 483 

significantly higher proportions of years with aflatoxin levels over threshold levels. Average 484 

aflatoxin, however, was not significantly different between counties identified with different risk 485 

levels due to unreliable averages because of irregular sampling. Despite the significant 486 

differences between counties with different risk levels and the similarities in patterns, sensitivity 487 

analysis suggested that at least 20 years of data are desirable to generate reliable space-time 488 

summaries of aflatoxin risk. Sensitivity analysis also showed that Poisson kriged patterns are 489 

more appropriate with smaller sample sizes when the threshold is a rarer occurrence (eg 100 490 

ppb).   491 

Identification and monitoring the weather conditions and counties associated with the 492 

highest contamination risk will allow for in-season adaptation strategies such as irrigation to 493 

avoid drought as temperatures and rainfall in June are carefully monitored in the key weeks 494 

around the mid-silk period with respect to 30 year normals. Also, testing can be focused in the 495 

highest risk counties and very little expensive aflatoxin testing will be needed in low risk years. 496 

Also the highest risk counties should consider growing more drought resistant hybrids. 497 

Future work could investigate developing an approach which takes into account the 498 

spatial variation in uncertainty associated with weather data availability. Also including new 499 

variables in the risk factors approach and fine tuning of the thresholds of the existing non-500 

weather risk factors which were less reliable/important in distinguishing between aflatoxin levels 501 

should be considered. Fine-tuning of threshold values might improve the identification of the 502 

counties at greatest risk. The data kriged to a 1 km grid shows the potential for defining the 503 
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smallest possible high risk areas which could reduce sampling cost but the potential value of 504 

using Area-to-Point kriging to produce these data should be assessed. Thresholding the risk 505 

factor data before kriging should also be investigated as a possible approach for pin-pointing the 506 

smallest at risk areas. The next major step in analysis is to include in season corn NDVI and 507 

thermal IR data in the risk factors approach to indicate in-season drought stress. This should 508 

allow areas smaller than a county that are at high risk to be identified within a particular season 509 

so that in-season adaptation strategies can be developed. An online interactive aflatoxin risk 510 

assessment tool that uses the risk factors approach outlined here is currently being developed and 511 

will include NDVI data. There is the potential that such an online tool could be adapted to other 512 

crops, states and even farms so that aflatoxin levels may be better managed. 513 
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Table 1. Threshold values used for Risk Factor Indicators 

Risk Factor Threshold for Indicator 
(1/0) 

June monthly maximum temperature (°C)* >33°C 
June monthly Rainfall (mm)* <50 mm 
Percent of county area growing corn (%) >1.75% 
Percent of county with well-drained soils (classes 1-4) (%) >90% 
Percent of county with excessively drained soils (classes 1-2.5) >2.5% 
Percent of years with 2 weather risk factors >30 % 
*Thresholds for June Tmax and June RF were chosen with respect to 30-year normal Tmax and RF in the 
area to show hotter and drier years than normal 

 



Table 2. Summary of comparison tests (Mann-Whitney U and Kruskal-Wallis H) for aflatoxin risk 

Test variable Grouping variable Classes in grouping variable Order of class ranks 
(lowest to highest) 

p-value

(A) Average aflatoxin for all years Identified as a 
low/high risk county 

1: 0-20% years ≥3 risk factors 
2: >20% years ≥3 risk factors 

1, 2 0.569 

PK % years aflatoxin >20ppb Identified as a 
low/high risk county 

1: 0-20% years ≥3 risk factors 
2: >20% years ≥3 risk factors 

1, 2 0.002 

PK % years aflatoxin >100ppb Identified as a 
low/high risk county 

1: 0-20% years ≥3 risk factors 
2: >20% years ≥3 risk factors 

1, 2 0.012 

(B) Aflatoxin measured for individual
years

Combined risk  
(year and county) 

Number of risk factors 
1: 0, 2: 1, 3: 2, 4: 3, 5: >4 

1, 2, 3, 4, 5 <0.001 

Aflatoxin measured for individual years County risk Number of risk factors 
1: 0, 2: 1, 3: > 2 

2, 1, 3 0.241 

Aflatoxin measured for individual years Year risk Number of risk factors 
1: 0, 2: 1, 3: > 2 

1, 2, 3 <0.001 

(C) Average aflatoxin for all years % years ≥3 risk factors 1: 0-20%, 2: 20-50%, 
3: 50-85%, 4: >85% 

 3, 4, 2, 1 0.043 

PK % years aflatoxin >20ppb % years ≥3 risk factors 1: 0-20%, 2: 20-50%, 
3: 50-85%, 4: >85% 

1, 2, 3, 4 <0.001 

PK % years aflatoxin >100ppb % years ≥3 risk factors 1: 0-20%, 2: 20-50%, 
3: 50-85%, 4: >85% 

1, 2, 3, 4 <0.001 

PK – Poisson kriged 



(a) % Corn (b) % Well-drained soil (c)% Excessively-drained soil (d) % of years with 2 weather risk factors

(e) % Corn risk (f)% well-drained soil risk (g)% Excessively-drained soil risk (h)% 2 weather risk factors risk 

(i) % of years ≥3 risk factors (j) % of years Aflatoxin > 20 ppb (k) % of years Aflatoxin > 100 ppb (l) Relationship: ≥ 3 risk factors/ > 20ppb Aflatoxin



ACCEPTED MANUSCRIPT

Fig. 9. Risk factors and their associated indicators plotted for each county kriged to a 1 km grid (a, e) percent of county area growing corn, (b, f) percent of county 
area with well-drained soils, (c, g) percent of county area with excessively drained soils and (d, h) percent of years each county has 2 weather risk factors and      
(i) percent of years with ≥ 3 risk factors, (j) percent of years with Aflatoxin > 20 ppb and (k) percent of years with aflatoxin > 100 ppb for each county.
(l) Relationship between percent of years with ≥ 3 risk factors and percent of years with > 20 ppb Aflatoxin for each county. Ellipses show visual empirical
groupings of years with low (blue/dotted), medium (green/dashed) and high risk (red/solid) of aflatoxin contamination



(a) 5 years of data,
20 ppb threshold

(b) 10 years of data,
20 ppb threshold

(c) 15 years of data,
20 ppb threshold

(d) All years of data,
20 ppb threshold

(e) 5 years of data,
100 ppb threshold

(f) 10 years of data,
100 ppb threshold

(g) 15 years of data,
100 ppb threshold

(h) All years of data,
100 ppb threshold

Figure 10. Poisson kriged maps of the proportion of years aflatoxin > 20ppb and 100ppb using (a, e) 5, (b, f) 10, (c, g) 15 and (d, h) all years of available data. 



Poisson kriging gives a useful spatio-temporal summary of aflatoxin contamination risk 

Risk factors approach identifies distinct groups of counties with different risk 

More than 15 years data needed for a good Poisson kriged space-time summary 




